Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Chem Sci ; 15(15): 5642-5652, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638228

ABSTRACT

Passivation treatment is an effective method to suppress various defects in perovskite solar cells (PSCs), such as cation vacancies, under-coordinated Pb2+ or I-, and Pb-I antisite defects. A thorough understanding of the diversified impacts of different defect passivation methods (DPMs) on the device performance will be beneficial for making wise DPM choices. Herein, we choose a hydrophobic Lewis acid tris(pentafluorophenyl)borane (BCF), which can dissolve in both the perovskite precursor and anti-solvent, as the passivation additive. BCF treatment can immobilize organic cations via forming hydrogen bonds. Three kinds of DPMs based on BCF are applied to modify perovskite films in this work. It is found that the best DPM with BCF dissolved in anti-solvent can not only passivate multiple defects in perovskite, but also inhibit δ phase perovskite and improve the stability of devices. Meanwhile, DPM with BCF dissolved in both the perovskite precursor and anti-solvent can cause cracks and voids in perovskite films and deteriorate device performance, which should be avoided in practical applications. As a result, PSCs based on optimal DPMs of BCF present an increased efficiency of 22.86% with negligible hysteresis as well as improved overall stability. This work indicates that the selection and optimization of DPMs have an equally important influence on the photovoltaic performance of PSCs as the selection of passivation additives.

2.
Stem Cell Res Ther ; 15(1): 100, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589882

ABSTRACT

BACKGROUND: Erythroid and myeloid differentiation disorders are commonly occurred in leukemia. Given that the relationship between erythroid and myeloid lineages is still unclear. To find the co-regulators in erythroid and myeloid differentiation might help to find new target for therapy of myeloid leukemia. In hematopoiesis, ALA (alpha lipoic acid) is reported to inhibit neutrophil lineage determination by targeting transcription factor ELK1 in granulocyte-monocyte progenitors via splicing factor SF3B1. However, further exploration is needed to determine whether ELK1 is a common regulatory factor for erythroid and myeloid differentiation. METHODS: In vitro culture of isolated CD34+, CMPs (common myeloid progenitors) and CD34+ CD371- HSPCs (hematopoietic stem progenitor cells) were performed to assay the differentiation potential of monocytes, neutrophils, and erythrocytes. Overexpression lentivirus of long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 transduced CD34+ HSPCs were transplanted into NSG mice to assay the human lymphocyte and myeloid differentiation differences 3 months after transplantation. Knocking down of SRSF11, which was high expressed in CD371+GMPs (granulocyte-monocyte progenitors), upregulated by ALA and binding to ELK1-RNA splicing site, was performed to analyze the function in erythroid differentiation derived from CD34+ CD123mid CD38+ CD371- HPCs (hematopoietic progenitor cells). RNA sequencing of L-ELK1 and S-ELK1 overexpressed CD34+ CD123mid CD38+ CD371- HPCs were performed to assay the signals changed by ELK1. RESULTS: Here, we presented new evidence that ALA promoted erythroid differentiation by targeting the transcription factor ELK1 in CD34+ CD371- hematopoietic stem progenitor cells (HSPCs). Overexpression of either the long isoform (L-ELK1) or the short isoform (S-ELK1) of ELK1 inhibited erythroid-cell differentiation, but knockdown of ELK1 did not affect erythroid-cell differentiation. RNAseq analysis of CD34+ CD123mid CD38+ CD371- HPCs showed that L-ELK1 upregulated the expression of genes related to neutrophil activity, phosphorylation, and hypoxia signals, while S-ELK1 mainly regulated hypoxia-related signals. However, most of the genes that were upregulated by L-ELK1 were only moderately upregulated by S-ELK1, which might be due to a lack of serum response factor interaction and regulation domains in S-ELK1 compared to L-ELK1. In summary, the differentiation of neutrophils and erythrocytes might need to rely on the dose of L-ELK1 and S-ELK1 to achieve precise regulation via RNA splicing signals at early lineage commitment. CONCLUSIONS: ALA and ELK1 are found to regulate both human granulopoiesis and erythropoiesis via RNA spliceosome, and ALA-ELK1 signal might be the target of human leukemia therapy.


Subject(s)
Leukemia , Thioctic Acid , Humans , Mice , Animals , Erythropoiesis , Neutrophils/metabolism , Interleukin-3 Receptor alpha Subunit , ets-Domain Protein Elk-1/genetics , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Differentiation/genetics , Erythrocytes , Hypoxia , Protein Isoforms
3.
Epigenetics ; 19(1): 2318506, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38439715

ABSTRACT

Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.


Subject(s)
Glioblastoma , Glioma , Humans , DNA Methylation , Prognosis , Glioma/genetics , Mutation , Tumor Microenvironment/genetics
4.
Neural Comput ; 36(4): 621-644, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38457752

ABSTRACT

Computational neuroscience studies have shown that the structure of neural variability to an unchanged stimulus affects the amount of information encoded. Some artificial deep neural networks, such as those with Monte Carlo dropout layers, also have variable responses when the input is fixed. However, the structure of the trial-by-trial neural covariance in neural networks with dropout has not been studied, and its role in decoding accuracy is unknown. We studied the above questions in a convolutional neural network model with dropout in both the training and testing phases. We found that trial-by-trial correlation between neurons (i.e., noise correlation) is positive and low dimensional. Neurons that are close in a feature map have larger noise correlation. These properties are surprisingly similar to the findings in the visual cortex. We further analyzed the alignment of the main axes of the covariance matrix. We found that different images share a common trial-by-trial noise covariance subspace, and they are aligned with the global signal covariance. This evidence that the noise covariance is aligned with signal covariance suggests that noise covariance in dropout neural networks reduces network accuracy, which we further verified directly with a trial-shuffling procedure commonly used in neuroscience. These findings highlight a previously overlooked aspect of dropout layers that can affect network performance. Such dropout networks could also potentially be a computational model of neural variability.


Subject(s)
Neural Networks, Computer , Visual Cortex , Neurons
5.
Stem Cell Res Ther ; 15(1): 68, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443990

ABSTRACT

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are of great therapeutic value due to their role in maintaining the function of hematopoietic stem/progenitor cells (HSPCs). MSCs derived from human pluripotent stem cells represent an ideal alternative because of their unlimited supply. However, the role of MSCs with neural crest origin derived from HPSCs on the maintenance of HSPCs has not been reported. METHODS: Flow cytometric analysis, RNA sequencing and differentiation ability were applied to detect the characteristics of stromal cells from 3D human brain organoids. Human umbilical cord blood CD34+ (UCB-CD34+) cells were cultured in different coculture conditions composed of stromal cells and umbilical cord MSCs (UC-MSCs) with or without a cytokine cocktail. The hematopoietic stroma capacity of stromal cells was tested in vitro with the LTC-IC assay and in vivo by cotransplantation of cord blood nucleated cells and stroma cells into immunodeficient mice. RNA and proteomic sequencing were used to detect the role of MSCs on HSPCs. RESULTS: The stromal cells, derived from both H1-hESCs and human induced pluripotent stem cells forebrain organoids, were capable of differentiating into the classical mesenchymal-derived cells (osteoblasts, chondrocytes, and adipocytes). These cells expressed MSC markers, thus named pluripotent stem cell-derived MSCs (pMSCs). The pMSCs showed neural crest origin with CD271 expression in the early stage. When human UCB-CD34+ HSPCs were cocultured on UC-MSCs or pMSCs, the latter resulted in robust expansion of UCB-CD34+ HSPCs in long-term culture and efficient maintenance of their transplantability. Comparison by RNA sequencing indicated that coculture of human UCB-CD34+ HSPCs with pMSCs provided an improved microenvironment for HSC maintenance. The pMSCs highly expressed the Wnt signaling inhibitors SFRP1 and SFRP2, indicating that they may help to modulate the cell cycle to promote the maintenance of UCB-CD34+ HSPCs by antagonizing Wnt activation. CONCLUSIONS: A novel method for harvesting MSCs with neural crest origin from 3D human brain organoids under serum-free culture conditions was reported. We demonstrate that the pMSCs support human UCB-HSPC expansion in vitro in a long-term culture and the maintenance of their transplantable ability. RNA and proteomic sequencing indicated that pMSCs provided an improved microenvironment for HSC maintenance via mechanisms involving cell-cell contact and secreted factors and suppression of Wnt signaling. This represents a novel method for large-scale production of MSCs of neural crest origin and provides a potential approach for development of human hematopoietic stromal cell therapy for treatment of dyshematopoiesis.


Subject(s)
Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Humans , Animals , Mice , Proteomics , Stromal Cells , Antigens, CD34 , Organoids , Prosencephalon , RNA
6.
Heliyon ; 10(5): e26914, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38434421

ABSTRACT

Background: Previous studies have shown that the traditional Chinese medicine (TCM) called "compound healthy ear agent" (CHEA) had anti-apoptosis effects in cochlear hair cells and spiral ganglion neurons, and could protect mice hearing against presbycusis or age-related hearing loss (AHL), as well as aminoglycoside antibiotic-induced ototoxicity. Because its mechanisms of action are still unclear, we investigated the mechanism of action of CHEA against AHL in mice using proteomics techniques. Methods: Eighteen C57BL/6J mice at 1 month of age were randomly divided into three groups: (A) drinking water until 2 months of age, K2M); (B) drinking water until 7 months of age to induce AHL, K7M; (C) drinking water containing CHEA daily until 7 months of age as treatment group, Z7M. At 2 or 7 months mice were sacrificed and their cochleae were removed for proteomics analysis. Results: The numbers of proteins with a false discovery rate (FDR) < 1% were respectively 5873 for qualitative and 5492 for quantitative statistics. The numbers of proteins with differential enrichment at least 1.5-fold (p < 0.05) were respectively 351 for K7M vs K2M groups, 52 for Z7M vs K7M groups, 264 for Z7M vs K2M groups. The differentially expressed proteins in the Z7M group were involved in synaptic molecular transmission, energy metabolism, immune response, antioxidant defenses, and anti-apoptosis. Conclusion: The TCM CHEA played a protective role against AHL in mice by regulating the expression of specific proteins and genes in cochlear hair cells and spiral ganglion neurons. Besides the pathways expected to be involved (antioxidant and anti-apoptosis), proteins related to immune response is a new finding of the present study.

7.
Theor Appl Genet ; 137(3): 57, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402327

ABSTRACT

KEY MESSAGE: Ten stable loci for freezing tolerance (FT) in wheat were detected by genome-wide association analysis. The putative candidate gene TaRPM1-7BL underlying the major locus QFT.ahau-7B.2 was identified and validated. Frost damage restricts wheat growth, development, and geographical distribution. However, the genetic mechanism of freezing tolerance (FT) remains unclear. Here, we evaluated FT phenotypes of 245 wheat varieties and lines, and genotyped them using a Wheat 90 K array. The association analysis showed that ten stable loci were significantly associated with FT (P < 1 × 10-4), and explained 6.45-26.33% of the phenotypic variation. In particular, the major locus QFT.ahau-7B.2 was consistently related to all nine sets of FT phenotypic data. Based on five cleaved amplified polymorphic sequence (CAPS) markers closely linked to QFT.ahau-7B.2, we narrowed down the target region to the 570.67-571.16 Mb interval (0.49 Mb) on chromosome 7B, in which four candidate genes were annotated. Of these, only TaRPM1-7BL exhibited consistent differential expression after low temperature treatment between freezing-tolerant and freezing-sensitive varieties. The results of cloning and whole-exome capture sequencing indicated that there were two main haplotypes for TaRPM1-7BL, including freezing-tolerant Hap1 and freezing-sensitive Hap2. Based on the representative SNP (+1956, A/G), leading to an amino acid change in the NBS domain, a CAPS marker (CAPS-TaRPM1-7BL) was developed and validated in 431 wheat varieties (including the above 245 materials) and 318 F2 lines derived from the cross of 'Annong 9267' (freezing-tolerant) × 'Yumai 9' (freezing-sensitive). Subsequently, the TaRPM1-7BL gene was silenced in 'Yumai 9' by virus-induced gene silencing (VIGS), and these silenced wheat seedlings exhibited enhanced FT phenotypes, suggesting that TaRPM1-7BL negatively regulates FT. These findings are valuable for understanding the complex genetic basis of FT in wheat.


Subject(s)
Seedlings , Triticum , Freezing , Seedlings/genetics , Triticum/genetics , Genome-Wide Association Study , Phenotype , Quantitative Trait Loci
8.
Science ; 383(6682): 524-531, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38301009

ABSTRACT

High-purity precursor materials are vital for high-efficiency perovskite solar cells (PSCs) to reduce defect density caused by impurities in perovskite. In this study, we present aqueous synthesized perovskite microcrystals as precursor materials for PSCs. Our approach enables kilogram-scale mass production and synthesizes formamidinium lead iodide (FAPbI3) microcrystals with up to 99.996% purity, with an average value of 99.994 ± 0.0015%, from inexpensive, low-purity raw materials. The reduction in calcium ions, which made up the largest impurity in the aqueous solution, led to the greatest reduction in carrier trap states, and its deliberate introduction was shown to decrease device performance. With these purified precursors, we achieved a power conversion efficiency (PCE) of 25.6% (25.3% certified) in inverted PSCs and retained 94% of the initial PCE after 1000 hours of continuous simulated solar illumination at 50°C.

9.
Proc Natl Acad Sci U S A ; 121(2): e2219352120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165927

ABSTRACT

High levels of mitochondrial reactive oxygen species (mROS) are linked to cancer development, which is tightly controlled by the electron transport chain (ETC). However, the epigenetic mechanisms governing ETC gene transcription to drive mROS production and cancer cell growth remain to be fully characterized. Here, we report that protein demethylase PHF8 is overexpressed in many types of cancers, including colon and lung cancer, and is negatively correlated with ETC gene expression. While it is well known to demethylate histones to activate transcription, PHF8 demethylates transcription factor YY1, functioning as a co-repressor for a large set of nuclear-coded ETC genes to drive mROS production and cancer development. In addition to genetically ablating PHF8, pharmacologically targeting PHF8 with a specific chemical inhibitor, iPHF8, is potent in regulating YY1 methylation, ETC gene transcription, mROS production, and cell growth in colon and lung cancer cells. iPHF8 exhibits potency and safety in suppressing tumor growth in cell-line- and patient-derived xenografts in vivo. Our data uncover a key epigenetic mechanism underlying ETC gene transcriptional regulation, demonstrating that targeting the PHF8/YY1 axis has great potential to treat cancers.


Subject(s)
Lung Neoplasms , Transcription Factors , Humans , Transcription Factors/metabolism , Reactive Oxygen Species/metabolism , Histone Demethylases/metabolism , Histones/metabolism , Cell Transformation, Neoplastic , Lung Neoplasms/genetics , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism
10.
Invest Ophthalmol Vis Sci ; 65(1): 13, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38175639

ABSTRACT

Purpose: The purpose of this study was to identify key genes and their regulatory networks that are conserved in mouse models of age-related macular degeneration (AMD) and human AMD. Methods: Retinal RNA-Seq was performed in laser-induced choroidal neovascularization (CNV) mice at day 3 and day 7 after photocoagulation. Mass spectrometry-based proteomic analysis was performed with retinas collected at day 3. Retinal RNA-Seq data was further compared among mouse models of laser-induced CNV and NaIO3-induced retinal degeneration (RD) and a large AMD cohort. Results: Retinal RNA-Seq revealed upregulated genes and pathways related to innate immunity and inflammation in mice with CNV, with more profound changes at the early stage (day 3). Proteomic analysis further validated these differentially expressed genes and their networks in retinal inflammation during CNV. Notably, the most evident overlap in the retina of mice with laser-induced CNV and NaIO3-induced RD was the upregulation of inflammation-related genes, pointing to a common vital role of retinal inflammation in the early stage for both mouse AMD models. Further comparative transcriptomic analysis of the mouse AMD models and human AMD identified 48 conserved genes mainly involved in inflammation response. Among them, B2M, C3, and SERPING1 were upregulated in all stages of human AMD and the mouse AMD models compared to controls. Conclusions: Our study demonstrates conserved molecular changes related to retinal inflammation in mouse AMD models and human AMD and provides new insight into the translational application of these mouse models in studying AMD mechanisms and treatments.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Retinal Degeneration , Humans , Animals , Mice , Proteomics , Macular Degeneration/genetics , Retina , Inflammation , Choroidal Neovascularization/genetics , Disease Models, Animal
11.
Oral Dis ; 2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38071190

ABSTRACT

OBJECTIVE: Lidocaine, a common local anesthetic in medical practice, exhibits anticancer properties across various tumor types. In this study, we aimed to investigate the effects and mechanisms of lidocaine on oral squamous cell carcinoma. METHODS: Cell viability and proliferation were assessed through CCK-8 and EdU assays. Transwell assays were used to analyze cell migration and invasion. Immunofluorescence assays were conducted to determine MMP9 levels. In vivo tumor growth was evaluated using a tumor xenograft model, and Ki67 and MMP9 levels were determined using immunohistochemistry. N6 -methyladenosine levels were assessed using dot plots and ELISA. mRNA and protein levels were examined through reverse transcription-quantitative PCR or western blot analysis. The association between IGF2BP2 and caveolin-1 was validated through RIP and luciferase reporter assays. RESULTS: Lidocaine exhibited suppressive effects on the viability, migration, invasion, and tumor formation of oral squamous cell carcinoma. IGF2BP2 expression correlated with poor survival and was downregulated by lidocaine. Lidocaine reduced caveolin-1 stability by decreasing IGF2BP2 levels. Caveolin-1 overexpression partially reversed the suppressive effects of lidocaine on the progression of oral squamous cell carcinoma cells. CONCLUSION: Lidocaine exerts an anticancer role in oral squamous cell carcinoma via IGF2BP2-mediated regulation of caveolin-1 stability.

12.
J Chromatogr Sci ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38117977

ABSTRACT

Radix gentianae (RG) is a traditional Chinese medicine used for the treatment of acute and chronic hepatitis in clinic. However, the chemical profile of RG is still unconfirmed, which hindered the progress of pharmacological study and clinical application. In this study, ultra-high performance liquid chromatography together with quadrupole time-of-flight mass spectrometry techniques were employed to separate and characterize the chemical constituents in RG. Under the optimized conditions, a total of 60 compounds were rapidly identified or tentatively characterized. Results indicated that iridoid glucosides, flavonoids, organic acids, amino acids, saccharides and nucleosides were major constituents in RG. It is concluded the established method can help to clarify the substance basis and provide useful information for ascertaining the bioactive constituents and action mechanism of RG.

13.
Nature ; 624(7992): 557-563, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37913815

ABSTRACT

Perovskite solar cells with the formula FA1-xCsxPbI3, where FA is formamidinium, provide an attractive option for integrating high efficiency, durable stability and compatibility with scaled-up fabrication. Despite the incorporation of Cs cations, which could potentially enable a perfect perovskite lattice1,2, the compositional inhomogeneity caused by A-site cation segregation is likely to be detrimental to the photovoltaic performance of the solar cells3,4. Here we visualized the out-of-plane compositional inhomogeneity along the vertical direction across perovskite films and identified the underlying reasons for the inhomogeneity and its potential impact for devices. We devised a strategy using 1-(phenylsulfonyl)pyrrole to homogenize the distribution of cation composition in perovskite films. The resultant p-i-n devices yielded a certified steady-state photon-to-electron conversion efficiency of 25.2% and durable stability.

14.
Nat Commun ; 14(1): 7802, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38016970

ABSTRACT

Clear cell carcinoma (CCC), endometrioid carcinoma (EC), and serous carcinoma (SC) are the major histological subtypes of epithelial ovarian cancer (EOC), whose differences in carcinogenesis are still unclear. Here, we undertake comprehensive proteomic profiling of 80 CCC, 79 EC, 80 SC, and 30 control samples. Our analysis reveals the prognostic or diagnostic value of dysregulated proteins and phosphorylation sites in important pathways. Moreover, protein co-expression network not only provides comprehensive view of biological features of each histological subtype, but also indicates potential prognostic biomarkers and progression landmarks. Notably, EOC have strong inter-tumor heterogeneity, with significantly different clinical characteristics, proteomic patterns and signaling pathway disorders in CCC, EC, and SC. Finally, we infer MPP7 protein as potential therapeutic target for SC, whose biological functions are confirmed in SC cells. Our proteomic cohort provides valuable resources for understanding molecular mechanisms and developing treatment strategies of distinct histological subtypes.


Subject(s)
Carcinoma, Endometrioid , Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial/genetics , Ovarian Neoplasms/metabolism , Proteomics , Carcinoma, Endometrioid/metabolism , Signal Transduction , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Membrane Proteins
15.
Exp Ther Med ; 26(5): 516, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37854499

ABSTRACT

Globally, liver cancer ranks among the most lethal cancers, with chemotherapy being one of its primary treatments. However, poor selectivity, systemic toxicity, a narrow treatment window, low response rate and multidrug resistance limit its clinical application. Liver-targeted nanoparticles (NPs) exhibit excellent targeted delivery ability and promising effectivity in treating liver cancer. The present study aimed to investigate the liver-targeting and anti-liver cancer effect of artesunate (ART)-loaded and glycyrrhetinic acid (GA)-decorated polyethylene glycol (PEG)-poly (lactic-co-glycolic acid) (PLGA) (ART/GA-PEG-PLGA) NPs. GA-coated NPs significantly increased hepatoma-targeted cellular uptake, with micropinocytosis and caveolae-mediated endocytosis as its chief internalization pathways. Moreover, ART/GA-PEG-PLGA NPs exhibited pro-apoptotic effects on HepG2 cells, mainly via the induction of a high level of reactive oxygen species, decline in mitochondrial membrane potential and induction of cell cycle arrest. Additionally, ART/GA-PEG-PLGA NPs induced internal apoptosis pathways by upregulating the activity of cleaved caspase-3/7 and expression of cleaved poly (ADP-Ribose)-polymerase and Phos-p38 mitogen-activated protein kinase in HepG2 cells. Furthermore, ART/GA-PEG-PLGA NPs exhibited higher liver accumulation and longer mean retention time, resulting in increased bioavailability. Finally, ART/GA-PEG-PLGA NPs promoted the liver-targeting distribution of ART, increased the retention time and promoted its antitumour effects in vivo. Therefore, ART/GA-PEG-PLGA NPs afforded excellent hepatoma-targeted delivery and anti-liver cancer efficacy, and thus, they may be a promising strategy for treating liver cancer.

16.
Ultrason Sonochem ; 99: 106588, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37690261

ABSTRACT

This study established an integrated process for the extraction and enrichment of chlorogenic acid(CGA)from Eucommia ulmoides leaves in a deep eutectic solvent system via ultrasonic wave-enhanced adsorption and desorption practices utilizing macroporous resins. Although deep eutectic solvents (DESs) have the advantages of chemical stability, good dissolving capacity, and nonvolatilization, routine solvent recovery operations are not suitable for subsequent separation in this solvent system. Based on the above characteristics, this study integrated the extraction and enrichment processes, in which DESs extracts directly loaded onto the macroporous adsorption resin, avoiding the loss of target components in solvent recovery and redissolution processes. The screening results of solvents and resin types further showed that choline chloride-malic acid (1:1) was the optimal DES, and the NKA-II resin had high adsorption and elution performance for CGA. The viscosities of the DESs were much higher than those of water and conventional organic solvents; thus, the mass transfer resistance was large, which could also affect the adsorption behaviour of the macroporous resin. The thermal and mechanical effects of ultrasound could effectively enhance the efficiency of the mass transfer, adsorption, and desorption in the DES systems. When compared to no sonication treatment, the CGA adsorption at various ultrasonic powers (120-600 W) was examined. At optimal ethanol concentration (60%), the effect of the ultrasonic treatment on the recovery of the DESs (water eluting process) and the desorption capability of CGA were confirmed. The use of three volumes of water elution could recover the DESs without loss of CGA. The adsorption process significantly differed depending on the ultrasonic settings, and the absorption balance time and experimental adsorption capacity at equilibrium were enhanced. Additionally, the adsorption procedure of the NKA-II macroporous resin for CGA under ultrasonic treatment could be clarified by the pseudo second order kinetic equation and the Freundlich isotherm model. Thermodynamic and dynamic parameters indicated that physical adsorption was the main process of the entire procedure, and it was a spontaneous, exothermic, and entropy-reducing physical adsorption process. This study potentially indicates that the use of ultrasonication, as a high-efficiency, environmentally friendly method, can enhance the features of the macroporous resin to better purify target chemicals from a DES extract.


Subject(s)
Chlorogenic Acid , Eucommiaceae , Deep Eutectic Solvents , Ultrasonics , Solvents , Water
17.
Eur Rev Med Pharmacol Sci ; 27(17): 8225-8233, 2023 09.
Article in English | MEDLINE | ID: mdl-37750651

ABSTRACT

OBJECTIVE: The aim of this study was to analyze the effect of Scarf and Chevron combined with Akin on a postoperative balance of patients with moderate to severe foot bunion. PATIENTS AND METHODS: One hundred (100 feet) patients with moderate to severe bunion cysts treated at our hospital from January 2019 to January 2022 were retrospectively selected as subjects and divided into 2 groups according to their surgical procedure. The control group received Scarf combined with Akin, and the study group received Chevron combined with Akin. Oxidative stress mediators [late oxidized protein product (AOPP), lipid peroxide (LPO)], inflammatory factors [interleukin-1ß (IL-1ß), procalcitonin (PCT)], Hallux valgus angle (HVA), intermetatarsal angle (IMA), distal metatarsal joint angle (DMAA) Angle, ankle-hind foot American Orthotic Foot and Ankle Association (AOFAS) score, pain visual analog scale (VAS) score and balance Berg Balance Scale (BBS) score were compared between the two groups before and after surgery. The effectiveness and safety of the operation were compared. RESULTS: The levels of AOPP and LPO in the study group decreased most significantly, t=1.081 and 10.850, p=0.001; the levels of IL-1ß and PCT in the study group increased most significantly, t=16.970 and 12.260, p=0.001; the indexes of HVA, IMA, and DMAA in the study group increased significantly, t=11.890, 11.550, and 12.670, p=0.001; the AOFAS and BBS scores in the study group increased significantly, while the VAS score in the study group decreased significantly, t=14.760, 13.580, 5.994, p=0.001; the total effective rate of treatment in the study group was the highest, χ²=6.960, p=0.00; the total incidence of complications in the study group was the lowest, χ²=1.834, p=0.175. CONCLUSIONS: Chevron combined with Akin is more effective than Scarf combined with Akin in treating moderate to severe foot bunion, the former is more minimally invasive and has a better effect in promoting postoperative balance recovery.


Subject(s)
Advanced Oxidation Protein Products , Bunion , Humans , Retrospective Studies , Lower Extremity , Patients , Lipid Peroxides , Procalcitonin
18.
PLoS Comput Biol ; 19(9): e1011486, 2023 09.
Article in English | MEDLINE | ID: mdl-37738258

ABSTRACT

Sensory perception is dramatically influenced by the context. Models of contextual neural surround effects in vision have mostly accounted for Primary Visual Cortex (V1) data, via nonlinear computations such as divisive normalization. However, surround effects are not well understood within a hierarchy, for neurons with more complex stimulus selectivity beyond V1. We utilized feedforward deep convolutional neural networks and developed a gradient-based technique to visualize the most suppressive and excitatory surround. We found that deep neural networks exhibited a key signature of surround effects in V1, highlighting center stimuli that visually stand out from the surround and suppressing responses when the surround stimulus is similar to the center. We found that in some neurons, especially in late layers, when the center stimulus was altered, the most suppressive surround surprisingly can follow the change. Through the visualization approach, we generalized previous understanding of surround effects to more complex stimuli, in ways that have not been revealed in visual cortices. In contrast, the suppression based on center surround similarity was not observed in an untrained network. We identified further successes and mismatches of the feedforward CNNs to the biology. Our results provide a testable hypothesis of surround effects in higher visual cortices, and the visualization approach could be adopted in future biological experimental designs.


Subject(s)
Visual Cortex , Visual Fields , Photic Stimulation/methods , Neural Networks, Computer , Visual Cortex/physiology , Neurons/physiology , Visual Perception/physiology
19.
Chem Commun (Camb) ; 59(72): 10813-10816, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37602429

ABSTRACT

Surface properties of SnO2 and their effects on the growth of perovskite films play a crucial role for perovskite solar cells (PSCs). Herein, a facile strategy to synchronously regulate the buried interface defects and energy level arrangement, as well as improve the crystallinity of perovskite films with alleviated micro-strain by pre-modifying the SnO2 surface with ammonium hexafluorophosphate (NH4PF6) is proposed. The device achieved the promising PCE of 22.50% and improved stability.

20.
Infection ; 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37651077

ABSTRACT

PURPOSE: Donor-derived infection (DDI) has become an important factor affecting the prognosis of lung transplantation patients. The risks versus benefits of using donor organs infected with multidrug-resistant organisms (MDRO), especially carbapenem-resistant organisms (CRO), are frequently debated. Traditional microbial culture and antimicrobial susceptibility testing at present fail to meet the needs of quick CRO determination for donor lungs before acquisition. In this study, we explored a novel screening method by using Xpert® Carba-R assay for CRO in donor lungs in a real-time manner to reduce CRO-associated DDI mortality. METHODS: This study was registered on chictr.org.cn (ChiCTR2100053687) on November 2021. In the Xpert Carba-R screening group, donor lungs were screened for CRO infection by the Xpert Carba-R test on bronchoalveolar fluid (BALF) before acquisition. If the result was negative, donor lung acquisition and subsequent lung transplantation were performed. In the thirty-five potential donors, nine (25.71%) with positive Xpert Carba-R results in BALF were declined for lung transplantation. Twenty-six recipients and the matching CRO-negative donor lungs (74.29%) were included in the Xpert Carba-R screening group. In the control group, nineteen recipients underwent lung transplants without Xpert Carba-R screening. The incidence and mortality of CRO-associated DDI were collected and contrasted between the two groups. RESULTS: Multivariate analysis showed that CRO-related death due to DDI within 60 days was significantly lower in the Xpert Carba-R screening group than that in the control group (OR = 0.05, 95% CI 0.003-0.74, p = 0.03). CONCLUSION: Real-time CRO screening of donor lungs before transplantation at the point of care by the Xpert Carba-R helps clinicians formulate lung transplantation strategies quickly and reduces the risk of subsequent CRO infection improving the prognosis of lung transplantation.

SELECTION OF CITATIONS
SEARCH DETAIL
...